Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Br J Nutr ; : 1-6, 2022 Aug 01.
Article in English | MEDLINE | ID: covidwho-2253117

ABSTRACT

Compared with an omnivorous Western diet, plant-based diets containing mostly fruits, vegetables, grains, legumes, nuts and seeds, with restricted amounts of foods of animal origin, are associated with reduced risk and severity of COVID-19. Additionally, inflammatory immune responses and severe acute respiratory symptoms of COVID-19, including pulmonary oedema, shortness of breath, fever and nasopharyngeal infections, are associated with Na toxicity from excessive dietary Na. High dietary Na is also associated with increased risks of diseases and conditions that are co-morbid with COVID-19, including chronic kidney disease, hypertension, stroke, diabetes and obesity. This article presents evidence that low dietary Na potentially mediates the association of plant-based diets with COVID-19 prevention. Processed meats and poultry injected with sodium chloride contribute considerable amounts of dietary Na in the Western diet, and the avoidance or reduction of these and other processed foods in whole-food plant-based (WFPB) diets could help lower overall dietary Na intake. Moreover, high amounts of K in plant-based diets increase urinary Na excretion, and preagricultural diets high in plant-based foods were estimated to contain much lower ratios of dietary Na to K compared with modern diets. Further research should investigate low Na in WFPB diets for protection against COVID-19 and co-morbid conditions.

2.
Front Med (Lausanne) ; 9: 923502, 2022.
Article in English | MEDLINE | ID: covidwho-2043484

ABSTRACT

Severe COVID-19 is characterized by profound CD8+ T-cell dysfunction, which cannot be specifically treated to date. We here investigate whether metabolic CD8+ T-cell reprogramming by ketone bodies could be a promising strategy to overcome the immunoparalysis in COVID-19 patients. This approach was triggered by our recent pioneering study, which has provided evidence that CD8+ T-cell capacity in healthy subjects could be significantly empowered by a Ketogenic Diet. These improvements were achieved by immunometabolic rewiring toward oxidative phosphorylation. We here report similar strengthening of CD8+ T cells obtained from severely diseased COVID-19 patients: Flow cytometry and ELISA revealed elevated cytokine expression and secretion (up to + 24%) upon ketone treatment and enhanced cell lysis capacity (+ 21%). Metabolic analyses using Seahorse technology revealed upregulated mitochondrial respiratory chain activity (+ 25%), enabling both superior energy supply (+ 44%) and higher mitochondrial reactive oxygen species signaling. These beneficial effects of ketones might represent evolutionary conserved mechanisms to strengthen human immunity. Our findings pave the road for metabolic treatment studies in COVID-19.

3.
Medicina (Kaunas) ; 57(8)2021 Jul 22.
Article in English | MEDLINE | ID: covidwho-1325732

ABSTRACT

Dietary factors in the etiology of COVID-19 are understudied. High dietary sodium intake leading to sodium toxicity is associated with comorbid conditions of COVID-19 such as hypertension, kidney disease, stroke, pneumonia, obesity, diabetes, hepatic disease, cardiac arrhythmias, thrombosis, migraine, tinnitus, Bell's palsy, multiple sclerosis, systemic sclerosis, and polycystic ovary syndrome. This article synthesizes evidence from epidemiology, pathophysiology, immunology, and virology literature linking sodium toxicological mechanisms to COVID-19 and SARS-CoV-2 infection. Sodium toxicity is a modifiable disease determinant that impairs the mucociliary clearance of virion aggregates in nasal sinuses of the mucosal immune system, which may lead to SARS-CoV-2 infection and viral sepsis. In addition, sodium toxicity causes pulmonary edema associated with severe acute respiratory syndrome, as well as inflammatory immune responses and other symptoms of COVID-19 such as fever and nasal sinus congestion. Consequently, sodium toxicity potentially mediates the association of COVID-19 pathophysiology with SARS-CoV-2 infection. Sodium dietary intake also increases in the winter, when sodium losses through sweating are reduced, correlating with influenza-like illness outbreaks. Increased SARS-CoV-2 infections in lower socioeconomic classes and among people in government institutions are linked to the consumption of foods highly processed with sodium. Interventions to reduce COVID-19 morbidity and mortality through reduced-sodium diets should be explored further.


Subject(s)
COVID-19 , Diabetes Mellitus , Disease Outbreaks , Female , Humans , SARS-CoV-2 , Sodium
SELECTION OF CITATIONS
SEARCH DETAIL